Sur-réplication et Volatilité Incertaine : Options Européennes, Américaines et Passeports
22 novembre 2013 Laisser un commentaire
Sur-réplication et Volatilité Incertaine : Options Européennes, Américaines et Passeports (PhD Thesis, 196p)
Malgré une littérature académique très riche, il n’y a pas de consensus pour modéliser la volatilité stochastique d’un sous-jacent. Une approche s’est alors développée où l’on recherche les stratégies qui vont (sur-)couvrir l’actif contingent quel que soit le modèle, tant que la volatilité reste dans un intervalle dont les bornes sont connues, sans autre restriction.
Un premier objectif de cette thèse a consisté à unifier et étendre les résultats déjà existants sur les options européennes dans un cadre commun. Un deuxième but a été de traiter le cas des options américaines. Nous caractérisons le prix par un problème de contrôle stochastique sur la volatilité et sur les temps d’arrêt. Un dernier objectif est de traiter les options passeports européennes et américaines. La caractérisation est encore un problème de contrôle stochastique où intervient de plus un contrôle sur la stratégie de trading de l’acheteur de l’option.
Ces caractérisations ne sont valables que pour des profils d’options très réguliers inexistants dans la pratique. Nous les étendons également au cas réaliste où la fonction payoff est continue.
D’un point de vue analytique, le calcul des prix demande la résolution d’une équation d’Hamilton-Jacobi-Bellman (HJB) – cas européen – ou d’un système d’inéquations de type HJB – cas américain -, munis d’une condition initiale.
password : volincertaine
Super-hedging Strategies and Uncertain Volatility : European, American and Passport Options
Despite a large number of theoretical works, there is no unique way to model the stochastic volatility of an underlying. A new approach has been developed where one determines the (super)hedging strategies which are admissible for any model where the volatility is lying in a known interval without other restriction.
In this thesis, our first objective standardizes and develops the existing results on European options in a common setting. A second objective is the study of American options. We characterize the price by a stochastic control problem with a control over volatility and over stopping times. A last objective is the study of European and American passport options. The prices are characterized by the same kind of stochastic control problem with moreover a control over all the trading strategies of the option’s buyer.
All those characterizations are valid for only very smooth payoff functions. We extend them to the practical case where the payoff functions are merely continuous.
From an analytic point of view the computation of those prices is given by the resolution of Hamilton-Jacobi-Bellman (HJB) equations (European case) or of a system of HJB inequations (American case) with an initial condition.